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Abstract
Based on the theory of thermal elasticity mechanics, a double-elastic beam
model is developed for transverse vibrations of double-walled carbon
nanotubes with large aspect ratios. The thermal effect is incorporated in the
formulation. With this double-elastic beam model, explicit expressions are
derived for natural frequencies and associated amplitude ratios of the inner to
the outer tubes for the case of simply supported double-walled carbon
nanotubes. The influence of temperature change on the properties of
transverse vibrations is discussed. It is demonstrated that some properties of
transverse vibrations of double-walled carbon nanotubes are dependent on
the change of temperature.

1. Introduction

Carbon nanotubes (CNTs) discovered in 1991 [1] are
cylindrical macromolecules composed of carbon atoms in
a periodic hexagonal arrangement. As they are found
to have remarkable mechanical, physical and chemical
properties, CNTs hold exciting promise as structural elements
in nanoscale devices or reinforcing elements in superstrong
nanocomposites [2, 3]. Recently, CNTs have received a great
deal of attention in various branches of science. By the use of
a variety of experimental, theoretical and computer simulation
approaches, extensive research studies of the properties of
CNTs have been carried out [4–13].

As a thorough understanding of the mechanical responses
of individual CNTs is of great importance for their potential
applications [14, 15], the study of the vibrational behavior
of CNTs is of practical interest. For the sake of the
difficulties in experimental characterization of nanotubes
and time-consuming and computationally expensive atomistic
simulations, elastic continuum models have been widely used
to study the vibrational behavior of CNTs [16–24]. In these
continuum models, the single-elastic-beam model [16, 17]
assumes that all originally concentric tubes of a multi-walled
carbon nanotube (MWNT) remain coaxial during vibration
while the multiple-elastic-beam model [20, 21] considers the

3 Author to whom any correspondence should be addressed.

intertube radial displacements of MWNTs which give rise
to complicated intertube resonant frequencies and noncoaxial
vibrational modes.

Lately, a great deal of research indicates that the
mechanical properties of CNTs are related to temperature
change. Zhang et al [25] conducted an experimental study of
thermal effects on the Raman spectra of single-walled carbon
nanotubes (SWNTs). They found that the lineshapes of the
radial breathing mode features are sensitive to temperature.
Raravikar et al [26] studied the temperature dependence of
the radial breathing mode Raman frequency of SWNTs by
using MD simulation and found that the coefficients of thermal
expansion are positive in both radial and axial directions
as the temperature is varied from 300 to 800 K. Schelling
and Keblinski [27] obtained similar results through MD
simulation. Pipes and Hubert [28] investigated the thermal
expansion of helical CNTs arrays and the effective coefficients
of thermal expansion of the array are determined. Based
on the interatomic potential and the local harmonic model,
Jiang et al [29] presented an analytical method to determine
the coefficient of thermal expansion for SWNTs. They
concluded that all the coefficients of thermal expansion are
negative at low and room temperature and become positive
at high temperature. Consequently, the investigation of the
thermal effect on the mechanical properties of CNTs is of
great importance and necessity. Ni et al [30] conducted
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an analysis of buckling behavior of SWNTs subjected to
axial compression under a thermal environment. Zhang
and Shen [31] investigated the temperature-dependent elastic
properties of SWNTs by molecular dynamics simulation. Yao
and Han [32, 33] studied the thermal effects on torsional and
axially compressed buckling of MWNTs.

In this paper, based on the theory of thermal elasticity,
a double-elastic-beam model is developed for transverse
vibrations of double-walled carbon nanotubes (DWNTs),
which accounts for the thermal effect in the formulation.
Explicit expressions are derived for natural frequencies and
associated amplitude ratios of the inner to the outer tubes for
the case of simply supported DWNTs, and the influences of
temperature change on them are investigated.

2. Double-elastic-beam model with thermal effect

The treatment of beam flexure developed here is on the basis
of the Bernoulli–Euler theory. This theory is based upon
the assumption that plane cross sections of a beam remain
plane during flexure and that the radius of curvature of a
bent beam is large compared with the beam’s depth. Using
the Bernoulli–Euler beam theory, the general equation for
transverse vibrations of an elastic beam under distributed
transverse pressure is expressed by [34, 35]

p(x) = E I
∂4w

∂x4
− N

∂2w

∂x2
+ ρ A

∂2w

∂t2
, (1)

where x is the axial coordinate, t is time, p(x) is the distributed
transverse pressure per unit axial length (measured positive in
the direction of the deflection), N is the axial force, w is the
deflection of the beam, I and A are the moment of inertia
and the area of the cross section of the beam, and E and ρ

are Young’s modulus and the mass density. Thus, E I denotes
the bending stiffness of the beam and ρ A represents the mass
density per unit axial length.

On the basis of the theory of thermal elasticity mechanics,
we have the following stress–strain relation [36]:

σ = λ(tr ε)δ + 2με − (3λ + 2μ)αθδ, (2)

where σ and ε are, respectively, stress and strain tensors, λ and
μ are Lame constants, δ is the Kronecker delta, the symbol ‘tr’
denotes the trace of a tensor, and α and θ are the coefficients
of thermal expansion and temperature change, respectively.

Another assumption behind the Bernoulli–Euler beam
model is that the beam consists of fibers parallel to the x axis,
each in a state of uniaxial tension or compression. For the case
of a uniaxial stress state, equation (2) reduces to

σ = Eε − E

1 − 2v
αθ, (3)

where σ is the axial stress, ε is the axial strain, α denotes
the coefficient of thermal expansion in the direction of the x
axis, and E and v are Young’s modulus and Poisson’s ratio,
respectively. It is noted that use is made of the following
equations:

λ = vE

(1 + v)(1 − 2v)
, μ = E

2(1 + v)
.

For the axial force N , we have

N = σ A = Nm + Nt , (4)

where

Nm = σm A, Nt = − E A

1 − 2v
αθ, (5)

in which σm is the axial stress due to the mechanical loading.
Substituting equation (4) into (1), we obtain(

σm A − E A

1 − 2v
αθ

)
∂2w

∂x2
+ p(x) = E I

∂4w

∂x4
+ρ A

∂2w

∂t2
. (6)

It is known that DWNTs are distinguished from traditional
elastic beams by their hollow two-layer structure and
associated intertube van der Waals forces. As CNTs have
high thermal conductivity, it may be regarded that the change
of temperature is uniformly distributed in the CNT. Thus,
equation (6) can be used for each of the inner and outer tubes
of the DWNTs. Assuming that the inner and outer tubes have
the same thickness and effective material constants, we have

p12 +
(

σm A1 − E A1

1 − 2v
αθ

)
∂2w1

∂x2
= E I1

∂4w1

∂x4
+ ρ A1

∂2w1

∂t2

(7a)

−p12+
(
σm A2 − E A2

1 − 2v
αθ

)
∂2w2

∂x2
= E I2

∂4w2

∂x4
+ρ A2

∂2w2

∂t2
,

(7b)
where subscripts 1 and 2 are used to denote the quantities
associated with the inner and the outer tubes, respectively, and
p12 denotes the van der Waals pressure per unit axial length
exerted on the inner tube by the outer tube.

For small-deflection linear vibration, the van der Waals
pressure at any point between two tubes should be a linear
function of the jump in deflection at that point. Thus, the
interaction pressure per unit axial length is given by [37, 38]

p12 = c(w2 − w1), (8)

where c is the intertube interaction coefficient per unit length
between two tubes, which can be estimated by [38]

c = 320(2R1) erg cm−2

0.16a2
,

where R1 is the radius of the inner tube, and the value of
parameter a is chosen to be 0.142 nm which is the length of
a C–C bond.

Introduction of equation (8) into equations (7a) and (7b)
yields

c(w2 − w1) +
(

σm A1 − E A1

1 − 2v
αθ

)
= E I1

∂4w1

∂x4

+ ρ A1
∂2w1

∂t2
(9a)

−c(w2 − w1) +
(

σm A2 − E A2

1 − 2v
αθ

)
= E I2

∂4w2

∂x4

+ ρ A2
∂2w2

∂t2
. (9b)

With the thermal effect included, these two differential
equations describe the transverse vibrations of DWNTs, and
they are coupled together by the van der Walls interaction.
When the thermal effect is ignored, equations (9a) and (9b)
reduce to the result obtained by Zhang et al [39] for DWNTs.
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3. Solution of the problem

Let us consider a DWNT of length L . Suppose that its ends are
simply supported, the boundary conditions are given by

w1(0, t) = ∂2w1(0, t)

∂x2
= w1(L , t) = ∂2w1(L , t)

∂x2
= 0

(10a)

w2(0, t) = ∂2w2(0, t)

∂x2
= w2(L , t) = ∂2w2(L , t)

∂x2
= 0.

(10b)
The homogeneous partial differential equations (9a) and (9b)
with the governing boundary conditions (10a) and (10b) can be
solved by the Bernoulli–Fourier method assuming the solutions
in the form

w1(x, t) =
∞∑

n=1

Xn(x)T1n(t) (11a)

w2(x, t) =
∞∑

n=1

Xn(x)T2n(t), (11b)

where T1n(t) and T2n(t) are the unknown time functions,
and Xn(x) is the known mode shape function for a simply
supported single beam, which is expressed as

Xn(x) = sin(knx), kn = nπ

L
, n = 1, 2, 3, . . . .

Introduction of equations (11a) and (11b) into equations (9a)
and (9b) leads to
∞∑

n=1

(
ρ A1

∂2T1n

∂t2
+

(
E I1k4

n + c

+
(

Nm1 − E A1

1 − 2v
αθ

)
k2

n

)
T1n − cT2n

)
Xn = 0

∞∑
n=1

(
ρ A2

∂2T2n

∂t2
+

(
E I2k4

n + c

+
(

Nm2 − E A2

1 − 2v
αθ

)
k2

n

)
T2n − cT1n

)
Xn = 0.

It follows from the above that

∂2T1n

∂t2
+ (F1 + ησm − Qαθ)T1n − H1T2n = 0 (12a)

∂2T2n

∂t2
+ (F2 + ησm − Qαθ)T2n − H2T1n = 0, (12b)

where

F1 = E I1k4
n

ρ A1
+ H1, H1 = c

ρ A1
, η = k2

n

ρ

F2 = E I2k4
n

ρ A2
+ H2, H2 = c

ρ A2
, Q = E

1 − 2v
η.

The solutions of equations (12a) and (12b) can be expressed
by

T1n(t) = C1n eiωn t , T2n(t) = C2n eiωn t , i = √−1,

(13)
where ωn denotes the natural frequency of the DWNT, and
C1n and C2n represent the amplitude coefficients of the inner
and outer tubes, respectively. Substituting equation (13) into
equations (12a) and (12b), we obtain

(F1 + ησm − Qαθ − ω2
n)C1n − H1C2n = 0 (14a)

(F2 + ησm − Qαθ − ω2
n)C2n − H2C1n = 0. (14b)

Non-trivial solutions for the constants C1n and C2n can
be obtained only when the determinant of the coefficients in
equations (14a) and (14b) vanishes. Consequently, we have

ω4
n − (F1 + F2 + 2ησm − 2Qαθ)ω2

n + (F1 + ησm − Qαθ)

× (F2 + ησm − Qαθ) − H1 H2 = 0 (15)

which is the frequency characteristic equation. It is found
that the discriminant of this biquadratic algebraic equation is
positive

� = (F1 − F2)
2 + 4H1 H2 > 0.

Thus the characteristic equation (15) has two different, real,
and positive roots

ω2
nI = 1

2 (F1 + F2 + 2ησm − 2Qαθ

−
√

(F1 − F2)2 + 4H1 H2) (16a)

ω2
nII = 1

2 (F1 + F2 + 2ησm − 2Qαθ

+
√

(F1 − F2)2 + 4H1 H2), (16b)

where ωnI is the lower natural frequency and ωnII is the higher
natural frequency. For each of the natural frequencies, the
associated amplitude ratio of the vibrational modes of the inner
to the outer tubes is given by

Bn = C1n

C2n
= H1

F1 + ησm − Qαθ − ω2
n

= F2 + ησm − Qαθ − ω2
n

H2
. (17)

Introducing equations (16a) and (16b) into equation (17),
respectively, we obtain

BnI = 1

2H2
(F2 − F1 +

√
(F1 − F2)2 + 4H1 H2) (18a)

BnII = 1

2H2
(F2 − F1 −

√
(F1 − F2)2 + 4H1 H2). (18b)

It can be observed that the amplitude ratio BnI dependent
on the lower natural frequency ωnI is always positive, which
indicates that the inner and outer tubes execute synchronous
vibrations, while the amplitude ratio BnII dependent on the
higher frequency ωnII is always negative, which indicates that
the inner and outer tubes execute asynchronous vibrations. It
can also be found that the amplitude ratios BnI and BnII are
independent of the change of temperature.

4. Discussion

To focus on the thermal effect, the axial mechanical load is
assumed absent. In this manner we have

ω2
nI = 1

2

(
F1 + F2 − 2Qαθ −

√
(F1 − F2)2 + 4H1 H2

)
(19a)

ω2
nII = 1

2

(
F1 + F2 − 2Qαθ +

√
(F1 − F2)2 + 4H1 H2

)
.

(19b)
When the thermal effect is also ignored, equations (19a)
and (19b) reduce to the classical results [20]

(ω0
nI)

2 = 1
2 (F1 + F2 −

√
(F1 − F2)2 + 4H1 H2) (20a)

(ω0
nII)

2 = 1
2 (F1 + F2 +

√
(F1 − F2)2 + 4H1 H2). (20b)
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Figure 1. Thermal effects on the lower natural frequency ωnI with
the aspect ratio L/d2 = 40 in the case of low or room temperature.
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Figure 2. Thermal effects on the higher natural frequency ωnII with
the aspect ratio L/d2 = 40 in the case of low or room temperature.

To examine the influence of temperature change on vibrations
of double-walled nanotubes, the results including and
excluding the thermal effect are compared. It follows that the
ratios of the results with temperature change to those without
temperature change are respectively given by

χI = ωnI

ω0
nI

, χII = ωnII

ω0
nII

.

As previously mentioned, Jiang et al [29] found that the
coefficients of thermal expansion for CNTs are negative at low
or room temperature and become positive at high temperature.
Consequently, the values of the ratios χI and χII are herein
calculated for both cases of low and high temperatures. The
parameters used in calculations for the DWNT are given as
follows: the Young’s modulus E = 1 TPa with the effective
thickness of SWNTs taken to be 0.35 nm and the mass density
ρ = 2.3 g cm−3 [40], the Poisson’s ratio ν = 0.3 [41],
and the inner diameter d1 = 0.7 nm and the outer diameter
d2 = 1.4 nm [42].

For the case of room or low temperature, we suppose α =
−1.6 × 10−6 K−1 [32, 33]. With the aspect ratio L/d2 = 40,
the thermal effects on the lower natural frequency ωnI and the
higher natural frequency ωnII are shown in figures 1 and 2,
respectively. With the vibrational mode number n = 2, the
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  = 20 K
  = 40 K
  = 60 K

0.98

1.16

χ I

20 30 40 50 60 70

L/d2

10 80

θ
θ
θ

Figure 3. Thermal effects on the lower natural frequency ωnI with
the vibrational mode number n = 2 in the case of low or room
temperature.
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10 80
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θ
θ
θ

0.999992

1.000048
χ II

Figure 4. Thermal effects on the higher natural frequency ωnII with
the vibrational mode number n = 2 in the case of low or room
temperature.

thermal effects on ωnI and ωnII represented by the ratios χI and
χII are indicated in figures 3 and 4. As can be seen, the thermal
effect on the lower natural frequency ωnI is significant while
the higher natural frequency ωnII is insensitive to temperature
change. The thermal effect on the lower natural frequency
ωnI diminishes with increasing the number n and becomes
more significant with the increase of the aspect ratio L/d2

and temperature change θ . Moreover, it can be observed from
figures 1–4 that the values of ωnI and ωnII accounting for the
thermal effect are larger than those ignoring the influence of
temperature change.

For the case of high temperature, we suppose α = 1.1 ×
10−6 K−1 [32, 33]. With the aspect ratio L/d2 = 40,
the thermal effects on the lower natural frequency ωnI and
the higher natural frequency ωnII are obtained, which are
illustrated in figures 5 and 6, respectively. With the vibrational
mode number n = 2, the thermal effects on ωnI and ωnII

are calculated, which are indicated in figures 7 and 8. It is
found from figures 5–8 that the thermal effect on the lower
natural frequency ωnI is significant while the influence of
temperature change on the higher natural frequency ωnII is
very insignificant. This is consistent with the case of room
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Figure 5. Thermal effects on the lower natural frequency ωnI with
the aspect ratio L/d2 = 40 in the case of high temperature.
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Figure 6. Thermal effects on the higher natural frequency ωnII with
the aspect ratio L/d2 = 40 in the case of high temperature.
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Figure 7. Thermal effects on the lower natural frequency ωnI with
the vibrational mode number n = 2 in the case of high temperature.

or low temperature. We can also draw a similar conclusion to
the case of room or low temperature that the thermal effect on
the lower natural frequency ωnI becomes less significant with
the increase of the vibrational mode number n and increases
with increasing the aspect ratio L/d2 and temperature change
θ . In addition, it is seen from figures 5–8 that the values of

20 30 40 50 60 70
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1.00000
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0.99996

1.00001

χ II

10 80
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Figure 8. Thermal effects on the higher natural frequency ωnII with
the vibrational mode number n = 2 in the case of high temperature.
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1.046792
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1.046793

1.046794

1.046795

0.10 0.20
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χ I

1.046792

Figure 9. Relationship between values of the ratio χI and parameter
a with n = 2, L/d2 = 40 and θ = 60 K in the case of low or room
temperature.

ωnI and ωnII considering the thermal effect are smaller than
those excluding the influence of temperature change, which is
contrary to the case at room or low temperature.

It should be pointed out that the present model can be
applied to the various nanotubes with different chirality as the
diameter of a SWNT is a function of tube chirality, which can
be expressed as

d =
√

3a

π

√
(n2

1 + n2
2 + n1n2),

where the pair of integers (n1, n2) represent the chirality of the
SWNT. In addition, it is noted that the parameter a, the C–
C bond length, is quoted as 0.142 nm in the present model.
However, the C–C bond length is actually not a uniform
constant in CNTs but is a function of bond orientation with
respect to the nanotube axis as well as tube chirality. In
consideration of this, the sensitivity of the present model to the
value of the parameter a is discussed, as shown in figures 9–
12. It is seen from figures 9–12 that the thermal effects on
transverse vibrations of DWNTs with large aspect ratios are
insensitive to the value variation of the parameter a. This
implies that for a specific diameter the thermal effect on the
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Figure 10. Relationship between the values of ratio χII and
parameter a with n = 2, L/d2 = 40 and θ = 60 K in the case of low
or room temperature.
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Figure 11. Relationship between the values of ratio χI and parameter
a with n = 2, L/d2 = 40 and θ = 60 K in the case of high
temperature.

transverse vibration of a DWNT with large aspect ratio is
almost independent of its chirality.

5. Conclusions

On the basis of the Bernoulli–Euler beam theory and thermal
elasticity, the general equation for transverse vibrations of
an elastic beam under distributed transverse pressure is
formulated. Following this general equation, a double-elastic-
beam model is developed for transverse vibrations of DWNTs,
which takes the thermal effect into account. For the case
of simply supported DWNTs, the natural frequencies and the
associated amplitude ratios of the inner to the outer tubes are
determined.

It is concluded that the thermal effect on the lower natural
frequency ωnI is significant while the higher natural frequency
ωnII is insensitive to the change of temperature. The thermal
effect on the lower natural frequency ωnI decreases with the
increase of the vibrational mode number n and increases with
increasing the aspect ratio L/d2 and temperature change θ . It
is also shown that the values of ωnI and ωnII accounting for the
thermal effect are larger than those ignoring the influence of
temperature change for the case of room or low temperature,
whereas the values of ωnI and ωnII with the thermal effect

0.999986

0.999988

0.999990

0.999992

0.999994

0.999996

0.12 0.14 0.16 0.18
a(nm)

0.10 0.20

0.999984

0.999998

χ ΙΙ

Figure 12. Relationship between the values of ratio χII and
parameter a with n = 2, L/d2 = 40 and θ = 60 K in the case of high
temperature.

are smaller than those excluding the thermal effect for the
case of high temperature. In addition, it is found that the
amplitude ratios BnI and BnII are independent of the change
of temperature. It is also shown that for a specific diameter
the thermal effect on the transverse vibration of a DWNT with
large aspect ratio is almost independent of its chirality.
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